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1. N =2 D = 10 Supersymmetric Double Field Theory

[1011.1324, 1105.6294, 1109.2035, 1112.0069, 1206.3478, 1210.5078]




Symmetries of SDFT

e O(D, D) T-duality
o Gauge symmetries

1. DFT-diffeomorphism (generalized Lie derivative)
e Diffeomorphism
e B-field gauge symmetry
2. A pair of local Lorentz symmetries, Spin(1, D—1); x Spin(D—1, 1)z

3. N =2 Local SUSY

¢ Coordinate gauge symmetry: section condition 9,9" = 0



Field contents of N =2 D = 10 SDFT

e Bosons

e NS-NS sector {

¢ R-R potential:

e Fermions

o DFT-dilatinos:
e Gravitinos:

DFT-dilaton:

DFT-vielbeins:

VAp ) VA;‘;
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Field contents of N' = 2 D = 10 SDFT

e Bosons
DFT-dilaton: d
e NS-NS sector . . -
DFT-vielbeins: Vap,  Vap
¢ R-R potential: C%s
e Fermions
¢ DFT-dilatinos: %, P
e Gravitinos: (T >
Index Representation Metric (raising/lowering indices)
A.B, - O(D, D) vector Y
DPyqy - Spin(1,D—1), vector Npg = diag(— ++---+)
a, B, Spin(1, D—1), spinor Ciag, )T = C.py”Cll
D, g, Spin(D—1, 1)g vector Mg = diag(+ — — - —)
@B, | Spin(D—1,Drspinor | Cin5, (3")"=Ciy°Cy!




Field contents of N' = 2 D = 10 SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { DFT-vielbeins:  Vip, Vi
¢ R-R potential: C%
o Fermions
o DFT-dilatinos: 2 P/ii
o Gravitinos: U5 ;/za

Al NS-NS fields, d, V., Va5, will be equally treated as basic geometric objects.



Field contents of N’ =2 D = 10 SDFT

e Bosons
DFT-dilaton: d
* NS-NS sector { DFT-vielbeins: Vap,  Vap
¢ R-R potential: C%
o Fermions
e DFT-dilatinos: %, i
e Gravitinos: P, 2

R-R potential is bi-fundamental spinor representation
as a democratic description.

¢f . O(D, D) spinor representation Fukuma, Oota Tanaka; Hohm, Kwak, Zwiebach



Field contents of N =2 D = 10 SDFT
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Field contents of N =2 D = 10 SDFT

e Bosons

DFT-dilaton:

* NS-NS sector { DFT-vielbeins:

¢ R-R potential:

o Fermions

e DFT-dilatinos:
e Gravitinos:

d
VAp 5 VA[;
C%
p* p'e
b
o5, Pl

A priori, O(D, D) rotates only the O(D, D) vector indices (capital Roman), and
the R-R sector and all the fermions are O(D, D) T-duality singlet.

IIA < 1IB exchange will follow only after parametrization and fixing a gauge.




Field contents of N’ =2 D = 10 SDFT

e Bosons
DFT-dilaton: d

* NS-NS sector { DFT-vielbeins: Vi,  Vap

¢ R-R potential: C%
e Fermions

o DFT-dilatinos: »*, e

e Gravitinos: e, 2
e Set the chiralities

(D+1) 1 — _ (D+1) ,
(D) o5 D+ _ o0 0 Up = cp, Y p=—Ccp,
¥ ¥ =cc'C. ! !
'7(D+1)1/); _ C/d)]/77 ,y(D+1)p/ _ —C/p,.

c and ¢’ are sign factors, and equivalent up to a Pin(1,9) x Pin(9, 1).
So we may fix ¢ = ¢’ = +1 without loss of generality.
However, the theory contains two ‘types’ of solutions, i.e. IIA and IIB.



Double-vielbein 1105.6294, 1109.2035

e The DFT-vielbeins satisfy the four defining properties:
VapVi =1y, VupVi% =1, VaV'=0, VaVi¥ +VaVs’ = Jas.
e They generate a pair of two-index projectors,
Pup := VaPVp,, Pap = Vi’ Vgp,
Pap, Pap are projection matrices(‘left and right’),
PPsC =PsC,  P.PS =P,C, PSPPsC =0
which are related to H and 7,
Pap+ Pas = Jap, Pap— Pas = Has

e Projection will be the characteristic property of DFT geometry.



Semi-covariant derivatives

‘We introduce master ‘semi-covariant’ derivative

Di=0a+Ta+ Py + s
It is also useful to set

Va=0a+T4, Dy =04+ Pa+

compatibility for the whole NS-NS sector

Dad =0,  DiVsp =0,  DaVsp=0.

It follows that
Vad =0, VaPpc =0, VAPBC:()?

Spin connections

D, .

(¢f. Due,* =0)

(cf-Vugur =0)

Papg = VBPVA Vg, @Aﬁé = VBEVA Vg ,



e Torsion free conection ,
0 _
Tiap =0,

is determined in terms of basic geometrical variables,

Toag = 2 (POCPP)[AB] + 2 (Pu"Py* — P"Py") OpPec

— 555 (PeuPp” + PcaPy) (0pd + (PO"PP) gp))

e General torsionful conection ,
Leas = Teup + Acas
As in SUGRA, the torsion can be constructed from the bi-spinorial objects, e.g.

pyscta,  Usyate,  pyascp,  Upyascd’

where we set ¥4 = VaPes, ya = Va7, .



Projection-aided covariant derivatives

“semi-covariant derivative” :
combined with the projections , we can generate various covariant quantities:

Examples:

e For O(D, D) tensors:

PcPPABVpTy, PcPPABVpTs,
PB4 Ts R P, Ts R Divergences ,
PABPCDVAVBTD N PABPCDVA VBTD . Laplacians

e Rule: need opposite chirality or contraction



Projection-aided covariant derivatives

e For Spin(1,D—1); x Spin(D—1, 1)k tensors:

D15, DTy,
D'T,, D'T;,
D,D'Ty, D;D'T,,
where we set
D, := V*,Da, Dy := VA;Dy.

These are the pull-back of the previous results using the double-vielbeins.



Projection-aided covariant derivatives

e Dirac operators for fermions, p“, ¥, 0'e, ,’,d :
Y'Dpp =7"Dap, V' Dytbp = v Datly
Dyp, Dpy” = Dayp”,
YDy’ = 7' Dap’, Y Dpty = 7' Datly

Dpp/ , D[J¢lp — DAwlA ,



Projection-aided covariant derivatives
e For Spin(1,D—1), x Spin(D—1, 1) bi-fundamental spinors, C* 5 :
YADaC, DaCH* .
e Further define
DLC = A"DAC + ~PHIDACH,

D_C :=+'"DsC — vPHIDLCH" .



Projection-aided covariant derivatives
For Spin(1, D—1), x Spin(D—1, 1)g bi-fundamental spinors, C“ 5 :

YADaC, DaCH* .

Further define
DLC = A"DAC + ~PHIDACH,

D_C :=+'"DsC — vPHIDLCH" .

Especially for the torsionless case, the corresponding operators are nilpotent

(DY)*Cc =0, (D°)C =0,

The field strength of the R-R potential, C* 5, is then defined by

F:=DiC.



Curvatures 1105.6294

e We define, as for a key quantity in our formalism, cf.
Sascp := 3 (Rasco + Repas — FEABFECD) .

This is Not covariant tensor, but contracting with projection operators, we can
obtain covariant quatities.

e Rank two-tensor:

PAP,%Sus, where Sap := SCacs

e Scalar curvature: defines the Lagrangian for NS-NS sector
(PAEPCP _ PABPCD)S, o,

e There is no covariant rank 4 tensor.



N =2D =10 SDFT

e Lagrangian (full order of fermions ):
ETych = 672{1 I:l(PABPCD — PABPCD)SACBD + lTI"(]:]?) — lﬁ]:pl + i?[)ﬁ’}’q]:ﬁ/ﬁlplq
+i3pY"Dyp — W'Dy p — sy Dy — ixp' V' Dy p' + "Dy p’ + i%i/?”’ﬁ@é,*w/p]
where %, denotes the charge conjugation, F := C'F'Cy.

® D, in Sacsp, D and D} are defined by their own torsionful connection ,

e The torsions are determined to satisfy usual 1.5 formalism ,

5LSDFT = 5FABC x 0.

e The Lagrangian is pseudo : self-duality of the R-R field strength needs to be
imposed by hand, just like the ‘democratic’ type I SUGRA Bergshoeft, er al.

(1=7®) (F = idpp + i3 vay") = 0.



N =2D =10 SDFT
e N =2 Local SUSY (full order of fermions ):
bed = —iz(Ep+E'p'),
b Vap = iVa"(E'3g¢), — Evpidy)
0 Vap = iVa®(Evgtp — E9505)
0-C = i (WPe), — e — &' A" + p&') + Ced — L (VA5 8.Vay)y I+ yPCHT
6ep = V" Dpe + ity"edpp’ — iV YIE T,
8:p = —V'Dse' + i3V Ppp — VYV by »
8etpp = Dpe + (F — iy p ¥y + ig0" 0/%)ipe’ + igetnp + i3tpep,
8oty = Dpe’ + (F — i3¥'p'dq + is 0" prg) e + ige'dpp’ +izue'p’.

D is also defined by its own torsionful connection.

o The action is invariant up to the self-duality.



2. Unification of IIA and IIB SUGRASs



Parametrization: Reduction to Generalized Geometry

e We have used the DFT-variables. We may parametrize them in terms of
Riemannian variables.

e Assuming that the upper half blocks are non-degenerate, the double-vielbein
takes the most general form,

w=( G s (S,

Here e,,” and ,” are two copies of the D-dimensional vielbein corresponding
to the same spacetime metric,

ey pg = 8uv -

and B,,,, corresponds to the Kalb-Ramond two-form gauge field, with
Bup = Buv (eil)pyv Bup = BW(Eil)ﬁu-



Parametrization: Reduction to Generalized Geometry

e Two parametrizations:

= et ) = Genn )
o) (W)

e there is no longer preferred parametrization =—> Non-geometric flux
c.f. “B-gravity” Lust, Andriot, Betz, Blumenhagen, Fuchs, Sun ef al.



Parametrization: Reduction to Generalized Geometry

e From now on, we take the former parametrization and impose 3‘2 =0.
"

e This reduces (S)DFT to generalized geometry
Hitchin; Grana, Minasian, Petrini, Waldram

e For example, the O(D, D) covariant Dirac operators become

V29 Dap = 4" (Onp + 190y P + 35HupY"p — Ontp) ,

V27 Dty = 7" (Ontlp + §wmpy"" % + @mipg0? + 3 HunpY "5 + 3 Hupgth? — Omptlp)
V2V4Dap = 8pp + 5wpay” 0 + §Hpat "0,

V2Day" = Oy + jwpar Y Y + P pgth? + § Hpgr v Y — 205007 .

l 1 . . . y s,
wy * 5H, and w, + ¢H), naturally appear as spin connections. Liu, Minasian



Unification of type IIA and I[IB SUGRAs

e In general, there can be different Riemaniann solution for each zehnbeins e,,”
and e,”.

e Since the two zehnbeins correspond to the same spacetime metric, they must be
related by a Lorentz rotation,

1N\ By —1— T—
(e” @), (e @)y "Tlpg = —pg -



Unification of type IIA and I[IB SUGRAs

e In general, there can be different Riemaniann solution for each zehnbeins e,,”
and e,”.

e Since the two zehnbeins correspond to the same spacetime metric, they must be
related by a Lorentz rotation,

1N\ By —1— T—
(e” @), (e @)y "Tlpg = —pg -

e Further, there is a spinorial representation of this Lorentz rotation,
Po—l 11 —1_\ P
S8 =71 (e ),

such that
SAMS = —det(e o)y .



Unification of type IIA and I[IB SUGRAs

In general, there can be different Riemaniann solution for each zehnbeins e,,”
and e,”.

Since the two zehnbeins correspond to the same spacetime metric, they must be
related by a Lorentz rotation,

1N\ By —1— T—
(e” @), (e @)y "Tlpg = —pg -

Further, there is a spinorial representation of this Lorentz rotation,
$A'S; =" (e )
such that
SAMS = —det(e o)y .

To relate with the supergravity, we relate two zehnbeins equal to each other

P —5 P
=e,

eu
This rotation may, or may not, flip the chirality

¢ — det(e'e)c’



Unification of type ITA and IIB SUGRAs

e The V' = 2 D = 10 SDFT Riemannian solutions are then classified into two
groups,
cc’ det(e'e) = +1 : typellA,
cc' det(e™'e) = —1 : typellB.



Unification of type IIA and I[IB SUGRAs

e The V' = 2 D = 10 SDFT Riemannian solutions are then classified into two
groups,
cc’ det(e'e) = +1 : typellA,
cc' det(e™'e) = —1 : typellB.

e We may safely put ¢ = ¢/ = +1 without loss of generality. However, the theory
contains two ‘types’ of Riemannian solutions, as classified above.



Unification of type IIA and IIB SUGRAS

e The V' = 2 D = 10 SDFT Riemannian solutions are then classified into two
groups,
cc’ det(e'e) = +1 : typellA,
cc' det(e™'e) = —1 : typellB.

e We may safely put ¢ = ¢/ = +1 without loss of generality. However, the theory
contains two ‘types’ of Riemannian solutions, as classified above.

o In conclusion, the single unique ' = 2 D = 10 SDFT unifies type IIA and IIB
SUGRAs.



Diagonal gauge fixing and Reduction to SUGRA

e Setting the diagonal gauge,
p—5 P
e, =ey
with 17,y = —Tg, 7* = ’Y<D+1)’Y”, '7<D+1) = —'y(D'H), breaks the local Lorentz
symmetry,

Spin(1,D—1); x Spin(D—1,1)s = Spin(1,D—1)p.



Diagonal gauge fixing and Reduction to SUGRA

e Setting the diagonal gauge,
P—= P
e, =ey
with 17,y = —Tg, 7* = ’Y(D+1)’Y”, '7<D+1) = —'y(D'H), breaks the local Lorentz
symmetry,

Spin(1,D—1); x Spin(D—1,1)s = Spin(1,D—1)p.

e And it reduces SDFT to SUGRA:
N =2D=10SDFT = 10D Type II democratic SUGRA

Bergshoeft, ef al.; Coimbra,
Strickland-Constable, Waldram

N =1D=10SDFT = 10D minimal SUGRA Chamseddine;
Bergshoeff et al.



Diagonal gauge fixing and Reduction to SUGRA

o After the diagonal gauge fixing, we may parameterize the R-R potential as
— (1 % /1 ajay---a,
C= (E) ZPIT[CHIHZ"'up’Y !
and obtain the field strength,
. 0 — (1 L / 1 ayar---a
Fi=DiC= (3)" X, Gany Fanar g V0
where Z; denotes the odd p sum for Type IIA and even p sum for Type IIB, and

|
]:alaz"'ap =p (D[achZ"'ap] - a[lllgzacaz"'“p]) + ﬁH[”l“Z“SC‘M”'aP]



Diagonal gauge fixing and Reduction to SUGRA

o After the diagonal gauge fixing, we may parameterize the R-R potential as

1 % 71 ajay---a
C= (5) Zp Flcalﬂzmup'y 1
and obtain the field strength,
D ceea
F=DiC=(3)" X, grmy Fawgn 7@
where Z; denotes the odd p sum for Type IIA and even p sum for Type IIB, and

!
'7:“]“2""’V =p (D[alcllz"'ap] - a[lllgzacaz"'“p]) + ﬁH[”l“2“3ca4”'ap]

o The pair of nilpotent differential operators, D% and D° , reduce to an exterior
derivative and its dual,

D = d+ (H —dg)A
D = x[d+ (H —dg)A | *



Diagonal gauge fixing and Reduction to SUGRA

e In this way, ordinary SUGRA = gauge-fixed SDFT,

Spin(1,D—1); x Spin(D—1,1)s = Spin(1,D—1)p.



Modified O(D, D) TIA < IIB

e In order to preserve the diagonal gauge, ¢, = e,”, the O(D, D) transformation
rule is modified.

e A compensating local Lorentz transformation, L;” , Sz% 5 € Pin(D—1, 1) ,
must be accompanied:

Vi — MALPVS'L AL =SS,
where
L=¢"[a'— (g+B)b][a' + (g—B)b]| 'e,

in the parametrization of the generic O(D, D) group element,

s [ a', b7
MA_(CW d)



Modified O(D, D) Transformation Rule After The Diagonal Gauge Fixing

d — d
Va? — MAB VP
V4P — MpB VL7
Co%, Foa —  C%(S;"a, Fo5(5.")4
p” — p*
P — (S2)% 30"
by — (L yg
i~ — (S2)* 54,

e All the barred indices are now to be rotated.



Modified O(D, D): 1IA < 1IB

o If and only if det(L) = —1, the modified O(D, D) rotation flips the chirality
of the theory, since
’7<D+1)SZ = det(L) Sjﬁ/(DJrl) .

e Thus, the mechanism above naturally realizes the exchange of type IIA and IIB
supergravities under O(D, D) T-duality.



Summary

N =2 D = 10 SDFT has been constructed to the full order in fermions.
This unifies type II supergravities in very simple form in democratic
fashion.

Parametrization independent variables in SDFT allows to have two types of
solution from a single theory.

Fixing ¢,” = &,” reduces SDFT to type IIA or 1B SUGRA

The gauge fixing modifies the O(10, 10) transformation rule and generate the
exchange of IIA and IIB theory.



Thank you.

==
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Appendix: Torsions

Tapc = Tipc+ i%ﬁ’YABC,U — 2ipyBcia — i%'lzﬁ’YABCQ/)ﬁ + ditppyathe
+l%ﬁl'7ABCP/ — 2ip' Y’ a — l’%iﬁ/p%gc'l//p + 4 pYat ¢ .
and D) and D))" are defined by their own connection,
Tipe =Tasc — igspyascp + i3 pysctha + i P yasctp — 2ithgyathe + i3p sca

s =Tasc — i%ﬁ/’VABcpl + i%ﬁ/’VBCT/)/A + i%&’”’VABcw/p — 2i) pYa c + i%ﬁ’YBCT,Z)A .



Appendix: 10D N =1 SUGRA 1112.0069

e From D = 11 SUGRA by Cremmer, Julia & Scherk with ansatz,

BA e_%‘be,/ 0
M 0 e%"b ’

1
A[_LVll = EB[_LV .

Al“’)\ - 07
U, = 128e6% (54 — Yt — Yap)
11
U, = —124e? (p+7"%a)

71 =—p. 710 =¢,
cf. Chamseddine, Bergshoeff et al.

"Y“mwa = ta,

we can derive the AV = 1 10D SUGRA.
Consistent with Coimbra, Strickland-Constable & Waldram.



Appendix: 10D N =1 SUGRA 1112.0069

e Action with full fermion order

Liop=e x e2? [R + 40,00 ¢ — LHy . HM
+i2V 207" [Omp + § (W + £H)mipY"p) — 4V 207 [0pp + 5 (w + 3H)pery" p)
. \[ Tpm ) 1 np
2V 247y Oty + 4(‘*) ) Yp + Wipgp? — mpq¢ ]

31 (D) (B ™8) = 25 (P i) (27" 0) |
e Supersymmetry

5.6 = Ne(p+ ), 0= i, OB = —2iE )
0ep = — L7 [Ou + H(w + LH)wer" — Ducte]

+igg (W etpa) Y™ e + g (PYavep) v + i3 (Evaton 1P,
0ea = %[8,15 + Hw+ LH)were]

—i3(pe) v — i (Pa)e + ig (Pyectba)y™ e + i3 (B )V Wa -



